Low temperature hydrogenation of iron nanoparticles on graphene

نویسندگان

  • Keisuke Takahashi
  • Yongming Wang
  • Shotaro Chiba
  • Yuki Nakagawa
  • Shigehito Isobe
  • Somei Ohnuki
چکیده

Hydrogenation of iron nanoparticles was performed both computationally and experimentally where previously chemically-bonded iron hydride is considered to be unachievable under ordinary conditions. Density functional theory (DFT) calculations predict that hydrogenated iron nanoparticles are stabilized on a single-layer graphene/Cu substrate. Experimentally, iron nanoparticles were deposited onto a graphene/Cu substrate by vacuum deposition. Hydrogenation was done at 1atm of hydrogen gas and under liquid nitrogen. Mass spectrometry peak confirmed the hydrogen release from hydrogenated iron nanoparticles while a scanning transmission electron microscopy is used in order to link a geometrical shape of iron hydride nanoparticles between experimental and theoretical treatments. The hydrogenated iron nanoparticles were successfully synthesized where hydrogenated iron nanoparticles are stable under ordinary conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical Vapor Deposition of Carbon Nanotubes on Monolayer Graphene Substrates: Reduced Etching via Suppressed Catalytic Hydrogenation Using C2H4

In most envisioned applications, the full utilization of a graphene-carbon nanotube (CNT) construct requires maintaining the integrity of the graphene layer during the CNT growth step. In this work, we exhibit an approach toward controlled CNT growth atop graphene substrates where the reaction equilibrium between the source hydrocarbon decomposition and carbon saturation into and precipitation ...

متن کامل

The microwave-assisted ionic liquid nanocomposite synthesis: platinum nanoparticles on graphene and the application on hydrogenation of styrene

The microwave-assisted nanocomposite synthesis of metal nanoparticles on graphene or graphite oxide was introduced in this research. With microwave assistance, the Pt nanoparticles on graphene/graphite oxide were successfully produced in the ionic liquid of 2-hydroxyethanaminium formate [HOCH2CH2NH3][HCO2]. On graphene/graphite oxide, the sizes of Pt nanoparticles were about 5 to 30 nm from tra...

متن کامل

Synergistic effects of Radiofrequency Hyperthermia temperature rate with magnetic Graphene oxide nanoparticles drug targeting on CT26 colon cancer cell line

Introduction: Graphene oxide (GO) sheets are carbon-networking nanomaterials offering excellent potential for drug delivery platforms due to hydrophobic interactions and high drug-loading efficiency. Superparamagnetic iron oxide nanoparticles can be used in certain applications such as cell labeling, drug delivery, targeting, magnetic resonance imaging and hyperthermia. Due t...

متن کامل

Effect of Superparamagnetic Fe 3 O 4 Nanoparticles on Schottky Barriers of Graphene

We demonstrated the effect of superparamagnetic Fe3O4 nanoparticles on Schottky barriers of graphene, in which the Fe3O4 nanoparticles were fabricated by a hydrothermal method and the single-layer graphene sheets were mechanically exfoliated from Kish graphite. The Fe3O4 nanoparticles were superparamagnetic with the saturation magnetic moment of about 32 emu/g at room temperature. We have found...

متن کامل

N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins.

N-doped graphene used as an efficient electron donor of iron catalysts for CO hydrogenation can achieve a high selectivity of around 50% for light olefins, significantly superior to the selectivity of iron catalysts on conventional carbon materials, e.g. carbon black with a selectivity of around 30% at the same reaction conditions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014